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Abstract

We introduce a class of finite-horizon dynamic optimization problems that we call multi-

action stochastic dynamic programs (DPs). Their distinguishing feature is that the decision

in each state is a multi-dimensional vector. These problems can in principle be solved using

Bellman’s backward recursion. However, complexity of this procedure grows exponentially in

the dimension of the decision vectors. This is called the curse of action-space dimensionality. To

overcome this computational challenge, we propose an approximation algorithm rooted in the

game theoretic paradigm of Sampled Fictitious Play (SFP). SFP solves a sequence of DPs with

a one-dimensional action-space, which are exponentially smaller than the original multi-action

stochastic DP. In particular, the computational e↵ort in a fixed number of SFP iterations is

linear in the dimension of the decision vectors. We show that the sequence of SFP iterates

converges to a local optimum, and present a numerical case study in manufacturing where SFP

is able to find solutions with objective values within 1% of the optimal objective value hundreds

of times faster than the time taken by backward recursion. In this case study, SFP solutions

are also better by a statistically significant margin than those found by a one-step lookahead

heuristic.

⇤
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1 Introduction

Consider the following class of finite-horizon stochastic dynamic programs (DPs). At the beginning

of periods t = 1, 2, . . . , T , a decision-maker observes the state st 2 St of a system, where St

are non-empty and finite sets with cardinality |St|. He then chooses an n-dimensional decision

vector a = (a
1

, a
2

, . . . , an), for some n > 1, where ai 2 Ai(st), for i = 1, 2, . . . , n. Here, Ai(st)

are non-empty and finite sets that may depend on st; we define A(st) as the Cartesian product

A
1

(st) ⇥ A
2

(st) . . . ⇥ An(st). The system then transitions into state st+1

2 St+1

with probability

pt(st+1

; st, a), and accrues expected reward rt(st, a). The goal is to choose decisions that maximize

the total T -period expected reward starting in initial state s
1

(thus S
1

is a singleton). We term

these problems unconstrained multi-action stochastic DPs because (i) the decision vectors are

multi-dimensional, and (ii) the decision vector in each state belongs to a Cartesian product of

finite sets and thus do not have cross-component linking constraints. More generally, the reader

can also imagine constrained multi-action stochastic DPs, where the decision vectors must satisfy

cross-component coupling constraints and hence belong to a subset F (st) of the Cartesian product

A(st). We implicitly assume that sets St do not depend on n, and in particular that they are

“small.” Thus, as we shall see in Section 2, the dimension n of the decision vectors is what makes

the problem di�cult, and this is the type of problems for which our methodology is particularly

suitable. Multi-action stochastic DPs provide a natural modeling framework for several sequential

decision problems. A few prototypical examples are discussed next.

1.1 Applications of multi-action stochastic dynamic programs

First consider a basic dynamic resource allocation problem where a known set of heterogeneous

activities can be performed in each time-period. A random additional amount of one resource

becomes available at the beginning of every time-period. The resource is necessary for performing

any activity. Each activity can be performed at a finite number of di↵erent levels. The resource

consumed by an activity as well as the expected reward obtained from that activity depend on

the level at which the activity is performed. The decision maker chooses the activity levels at

the beginning of every period after observing the available resource; the resource remaining after

allocation can be carried forward to the next period perhaps by incurring an inventory holding cost.
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Reward functions and cost functions may vary across time-periods. The goal is to maximize the

total finite-horizon expected net reward. The economic tradeo↵ is between immediately spending

the resource on activities that appear valuable versus saving some of the resource, incurring holding

costs in some cases, with the hope that it can be utilized for higher rewards in the future.

This dynamic resource allocation problem is a constrained multi-action stochastic DP and its

detailed formulation is given in Appendix A. The dimension n of the decision vectors equals the

total number of activity types. The state corresponds to the amount of resource available at the

beginning of a period. The set of feasible decision vectors is defined by the constraint that the

total amount of resource consumed by all activities cannot exceed the amount of resource that

is available. Through a simple transformation that we describe in Appendix A, this constrained

multi-action stochastic DP can in fact be converted to an unconstrained multi-action stochastic

DP.

An appropriately modified version of the dynamic resource allocation problem, where the re-

source corresponds to the wealth of an investor and the activities correspond to di↵erent financial

assets, leads to a well-known class of dynamic portfolio optimization problems [13] that can be

formulated as multi-action stochastic DPs.

The following dynamic pricing problem [19] is also closely related to the dynamic resource

allocation problem and can be modeled as a multi-action stochastic DP. A firm is endowed with a

fixed initial quantity of a resource that can be used for providing di↵erent services from a fixed set

of possible services. The resource cannot be replenished over the problem horizon. Each service

o↵ered consumes a fixed quantity of the resource. In each period, after observing the amount of

available resource, the firm decides which services to o↵er, and what the corresponding prices should

be. These prices induce a random demand for the services thus generating a random revenue. The

goal is to maximize the total expected revenue over the problem horizon.

Another variation where the resource corresponds to a raw material such as crude oil, and the

activities correspond to di↵erent end products such as di↵erent refined fractions [15], leads to a

dynamic resource procurement and product-mix problem. In that case, the raw material does not

randomly arrive but must be purchased at a price that itself may be assumed to follow a suitable

stochastic process hence requiring an appropriate modification of the state definition. Moreover,

the amount of resource purchased also becomes a decision variable. This problem can also be
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formulated as a multi-action stochastic DP.

The dynamic pricing and the dynamic resource procurement and product-mix problems possess

a structural feature that often arises in manufacturing and service operations management. In

particular, in these problems, di↵erent kinds of decisions need to be made in each time-period: in

the dynamic pricing problem, service types as well as prices need to be chosen; in the dynamic re-

source procurement and product-mix problem, a resource procurement strategy as well as product

types must be selected. Such heterogeneous decisions were traditionally optimized separately in

a hierarchical manner. However, the more recent trend in the operations management literature

is toward an integrated view where decisions at strategic, tactical and operational decisions are

optimized in a single optimization model. Examples include integrated decision models for simul-

taneous pricing and production/inventory decisions [6, 9] and jointly optimizing dynamic pricing

and sequencing policies for multi-product, single-server queuing systems [18]. Such integrated de-

cision problems can be formulated as multi-action stochastic DPs, and in fact, the manufacturing

application presented in Section 5 exhibits this feature.

We next describe the key computational challenge in solving multi-action stochastic DPs.

2 Computational di�culties in finding an exact solution

For simplicity of exposition, we focus in this and the next two sections on unconstrained multi-

action stochastic DPs. As demonstrated in Appendix A for the special case of dynamic resource

allocation problems and also in our manufacturing case study in Section 5, a constrained mutli-

action stochastic DP can be converted into an equivalent, unconstrained one by mapping infeasible

solutions into feasible solutions. Consequently, the ideas developed here continue to apply to

constrained multi-action stochastic DPs as well. (As long as one feasible solution to the constrained

multi-action stochastic DP is known, such a transformation is always possible by mapping all

infeasible solutions to this single feasible solution.)

First, we recall standard terminology from DP (see [1, 23, 24, 26]). A (Markovian deter-

ministic) policy ⇡ = (⇡
1

,⇡
2

, . . . ,⇡T ) is a mapping that assigns n-dimensional decision vector

⇡t(st) = (⇡
1t(st),⇡2t(st), . . . ,⇡nt(st)) 2 A(st) to state st 2 St in period t. The set of all such

policies is denoted by ⇧. Let V⇡(s1

) denote the total T -period expected reward obtained by imple-
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menting policy ⇡ starting in initial state s
1

. It is given by

V⇡(s1

) , E⇡

 T
X

t=1

rt(Zt,⇡t(Zt))
�

�

�

�

Z
1

= s
1

�

, (1)

where Z
2

, . . . , ZT are the random states occupied beginning periods 2, . . . , T , respectively, given

that the initial state Z
1

is s
1

and policy ⇡ is implemented.

There exists a policy in ⇧ that maximizes the total T -period expected reward among all decision

rules. Thus a policy is said to be optimal if it maximizes V⇡(s1

) over all ⇡ 2 ⇧. The decision-maker’s

problem is hence given by

V
1

(s
1

) , max
⇡2⇧

V⇡(s1

). (2)

More generally, let Vt(st) denote the maximum total expected reward in periods t, . . . , T when

starting period t in state st. Problem (2) can in principle be solved using Bellman’s equations

Vt(st) = max
a2A(st)

⇢

rt(st, a) +
X

st+12St+1

pt(st+1

; st, a)Vt+1

(st+1

)
�

8st 2 St, (3)

in the order t = T, . . . , 1, where VT+1

(sT+1

) = 0 for all sT+1

2 ST+1

. Decisions that achieve the

above maxima define an optimal policy in ⇧.

If cardinality |Ai(st)| = M for each i, then cardinality |A(st)| = Mn. Thus the computational

e↵ort required to perform one maximization in (3) grows exponentially with n . This is called the

curse of action-space dimensionality [23] and it makes exact solution of a multi-action stochastic

DP intractable. We propose an approximation algorithm rooted in a game theoretic best response

paradigm called Sampled Fictitious Play (SFP) [16]. As we shall see, n DPs, each with a one-

dimensional action-space, are solved in each iteration of SFP and hence the computational e↵ort in

one iteration grows linearly with n. We will prove that SFP converges to locally optimal solutions

of the multi-action stochastic DP, and will demonstrate through numerical results that SFP can

obtain high-quality solutions very quickly. In order to make some of these ideas rigorous, we need

to view the original multi-action stochastic DP as an equivalent game of common interests between

n players as described next.

5



3 An equivalent game of common interests

We view an unconstrained multi-action stochastic DP as a game of common interests in which player

i corresponds to the ith component of the decision vector. A pure strategy  i = ( i1, . . . , iT ) for

player i is a mapping that prescribes decisions  it(st) 2 Ai(st) in every state st 2 St in every period

t. Let  i denote the non-empty and finite set of all such pure strategies for player i. A pure joint

strategy for all players is given by  = ( 
1

, 
2

, . . . , n). The set of all such pure joint strategies is

denoted by  =  
1

⇥  
2

⇥ . . . ⇥  n. Each  2  defines a unique policy ⇡ 2 ⇧ that prescribes

the decision vector ⇡t(st) = ( 
1t(st), 2t(st), . . . , nt(st)) in state st in period t. We express this

one-to-one relationship between pure joint strategies in  and policies in ⇧ by using an operator

O :  ! ⇧. Note that for every policy ⇡ 2 ⇧, there exists a (unique) pure joint strategy  2  

such that O( ) = ⇡. In particular, this  is precisely the pure joint strategy in which player i’s

pure strategy prescribes decision ⇡it(st) in state st in period t, that is,  it(st) = ⇡it(st). That

is, O is onto. The identical payo↵ U( ) received by each player on playing pure joint strategy

 is defined as the total T -period expected reward obtained by implementing policy O( ) 2 ⇧.

Mathematically,

U( ) , VO( )

(s
1

), (4)

for all  2  . The players then solve a game of common interests given by

max
 2 

U( ). (5)

This game has previously been called a common interest stochastic game, or a team Markov game

(see, for example, [2]). We have

Lemma 3.1. If  2  is optimal to (5), then O( ) is optimal to (2).

Proof. We have U( ) � U(⇠) for all ⇠ 2  . Thus (4) implies that VO( )

(s
1

) � VO(⇠)(s1

) for

all ⇠ 2  . This proves the claim because O is onto as explained in the first paragraph in this

section.

We now review basic concepts from game theory (see [10]) and establish that Nash equilibria

of (5) are locally optimal for (2). We use  �i to denote pure strategies ( 
1

, . . . , i�1

, i+1

, . . . , n)
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of all players except player i (subscript �i is interpreted similarly everywhere). For µi 2  i and

 2  , (µi, �i) denotes the pure joint strategy in which player i plays µi and the others play  �i.

Definition 3.2. A pure joint strategy  2  is a Nash equilibrium for (5) if, for each i = 1, 2, . . . , n,

U( ) � U(µi, �i), 8µi 2  i. (6)

That is, if no player can increase the payo↵ to all players by unilaterally altering its own pure

strategy.

An optimal pure joint strategy for (5) is a Nash equilibrium for (5). Conversely, a pure joint

strategy Nash equilibrium for (5) can be seen as a local optimum for (5) because moving away

from a Nash equilibrium along any of the “coordinate directions” does not improve the common

objective. Formally, let N ( ) , {(µi, �i) : µi 2  i, for some i} be a neighborhood of  2  , and

note that (6) can be written as U( ) � U(µ) for all µ 2 N ( ).

Lemma 3.3. If  is a pure joint strategy Nash equilibrium for (5), then O( ) is locally optimal

for (2) in the sense that VO( )

(s
1

) � VO(µ)

(s
1

) for all µ 2 N ( ).

Proof. We have, VO( )

(s
1

) = U( ) � U(µ) = VO(µ)

(s
1

) for all µ 2 N( ), by (4) and since  is a

Nash equilibrium.

Thus, although the concept of local optimality has not been used in the published approximate

dynamic programming literature to the best of our knowledge (see, however, a recent doctoral

dissertation on near-optimality in sequential decision problems [27]), in the context of multi-action

stochastic DPs it is identical to the notion of local optimality in static optimization — a solution

is locally optimal if it has the best objective value in its neighborhood.

We define the set �i of all mixed strategies for player i as �i ,
⇢

fi :  i ! [0, 1] :
P

 i2 i

fi( i) =

1
�

. Each fi 2 �i can be viewed as an assignment of probabilities, or beliefs, to the elements of  i.

We identify pure strategies  i 2  i as members of �i that assign probability 1 to  i. We define

� , �
1

⇥�
2

⇥ · · ·�n and an f = (f
1

, f
2

, . . . , fn) 2 � is called a mixed joint strategy. Note that

the set � can be viewed as belonging to a Euclidean space. We extend the domain of the payo↵
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function U such that for any mixed joint strategy f 2 �, we have,

U(f) ,
X

 2 
U( )f( ) =

X

 2 
U( 

1

, 
2

, . . . , n)f
1

( 
1

)f
2

( 
2

) · · · fn( n). (7)

We interpret this U(f) as the expected payo↵ to all players when they independently choose pure

strategies with probabilities defined by f = (f
1

, . . . , fn). We now establish a relation between mixed

joint strategies and a class of randomized decision rules for the multi-action stochastic DP.

We define a set � of randomized decision rules for the multi-action stochastic DP as � ,
⇢

� :

⇧! [0, 1] :
P

⇡2⇧
�(⇡) = 1

�

. That is, � chooses Markovian deterministic policies ⇡ with probabilities

�(⇡). The total T -period expected reward accrued by a randomized decision rule � 2 � is given by

V�(s1

) ,
X

⇡2⇧
V⇡(s1

)�(⇡). (8)

A mixed joint strategy f 2 � defines a unique randomized decision rule denoted ⇥(f) 2 �, which

chooses policies O( ) with probabilities f( ) for all  2  . This yields

U(f) =
X

 2 
U( )f( ) =

X

 2 
VO( )

(s
1

)f( ) =
X

⇡2⇧
V⇡(s1

)[⇥(f)(⇡)] = V
⇥(f)

(s
1

), (9)

where the third equality holds because O is bijective and f( ) is the same as ⇥(f)(⇡) for ⇡ = O( ).

Definition 3.4. A mixed joint strategy f 2 � is a Nash equilibrium, if for each player i,

U(f) � U(gi, f�i) 8gi 2 �i. (10)

That is, if no player can increase the payo↵ to all players by altering its own mixed strategy.

For any f 2 �, its neighborhood M(f) , {(gi, f�i) : gi 2 �i, for some i}. Then (10) can be

written as U(f) � U(g) for all g 2M(f). This yields the following counterpart of Lemma 3.3.

Lemma 3.5. If f 2 � is a mixed joint strategy Nash equilibrium then the randomized decision rule

⇥(f) 2 � is locally optimal for (2) in the sense that V
⇥(f)

(s
1

) � V
⇥(g)

(s
1

) for all g 2M(f).

Proof. By (9) and since f is a Nash equilibrium, V
⇥(f)

(s
1

) = U(f) � U(g) = V
⇥(g)

(s
1

) 8g 2

M(f).
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Thus any e�cient algorithm for finding Nash equilibria of (5) will e�ciently discover locally

optimal solutions of (2). We chose SFP [16], which in turn is based on fictitious play (FP) [3, 22, 25],

for this purpose. This choice was motivated by (i) the high quality of solutions delivered by

variants of FP in other discrete optimization problems [4, 7, 8, 12, 17]; (ii) previous evidence that

the sampling process in SFP provides a good tradeo↵ between exploitation and exploration of

the solution space [7, 8]; (iii) SFP’s asymptotic convergence to equilibrium for games of common

interests [16]; (iv) the fact, as we shall show, that SFP in every iteration solves n DPs, each with

a one-dimensional action-space, instead of the original intractable n-dimensional DP; and (v) the

ease with which SFP can be parallelized (see [7]) across the n components of the decision vectors,

achieving a further n-fold reduction in wall-clock time needed.

4 Sampled fictitious play

Fictitious play [3, 25] was originally proposed to find Nash equilibria of two-player games and was

later extended to n-player games [22]. In each iteration of FP, each player computes a pure strategy

best response assuming that the other players will play according to the mixed strategy defined by

their empirical frequency of past best responses. The empirical frequencies are then updated with

these new best responses. For games of common interests, the sequence of empirical frequencies

converges to equilibrium in the following sense. For every � > 0, there exists an iteration counter 

such that each empirical frequency in all iterations k �  is within a Euclidean distance � from some

(possibly mixed joint strategy) Nash equilibrium. See [16, 22] for a proof of this result. However,

a straightforward implementation of FP is impractical when the sets of pure strategies are large.

This is because each player’s best response requires a computationally demanding calculation of

that player’s expected payo↵ given the other players’ mixed strategies. SFP [16] overcomes this

hurdle by approximating this expectation with a sample average (Steps 2(a), (b) below) and still

retains convergence to equilibrium (Theorem 4.2 below) as in FP.

We now present SFP for the game of common interests from Section 3. We let fk denote the

empirical frequency of best responses of all players in the first k iterations. Formally, for any player

i and any pure strategy  i 2  i, fk
i ( i) equals the proportion of iterations, out of k, in which pure

strategy  i was player i’s best response. Thus fk
i is a probability mass function over  i and hence
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belongs to �i. Moreover, fk = (fk
1

, fk
2

, . . . , fk
n) belongs to � and hence is a mixed joint strategy.

Algorithm 4.1 (Sampled Fictitious Play).

1. Initialization: Set iteration k = 1 and select  0 2  =  
1

⇥ 
2

⇥ . . .⇥ n arbitrarily; set

f0

i ( 0

i ) = 1 for all players i, and f0

i (⇠i) = 0 for all players i and all ⇠i 2  i such that ⇠i 6=  0

i .

2. Iteration k � 1:

(a) Sampling: Select a sample size Nk � 1, and draw an iid pure strategy sample  jk
i , for

j = 1, . . . , Nk, from the probability distributions fk�1

i , for each player i.

(b) Best response: For each player i, find a pure strategy best response to the sample  jk
�i,

for j = 1, 2, . . . , Nk, drawn by the other players, by solving

 k
i 2 argmax

 i2 i

8

<

:

Nk
X

j=1

U( i, 
jk
�i)

Nk

9

=

;

. (11)

(c) Belief update: Update empirical frequencies of best responses for each player i by

setting

fk
i ( k

i ) =
1 + (k � 1)fk�1

i ( k
i )

k
,

fk
i (⇠i) =

(k � 1)fk�1

i (⇠i)
k

for ⇠i 2  i, ⇠i 6=  k
i .

Increment k by 1 and go to the next iteration.

The following theorem is proven in [16] for a general common interest game.

Theorem 4.2. Suppose sample sizes Nk =
⌃

Ck�
⌥

for some � > 1

2

and C > 0. Then, with

probability 1, the sequence {fk}1k=1

converges to equilibrium in the sense described above.

Corollary 4.3. Suppose sample sizes Nk =
⌃

Ck�
⌥

for some � > 1

2

and C > 0. Then, with

probability 1, the sequence {⇥(fk)}1k=1

of randomized decision rules converges to local optima for

the multi-action stochastic DP.

We now make a few observations that render this algorithm particularly easy to implement.
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E�cient sampling: It is not necessary to explicitly maintain and update empirical frequencies

fk as this would be computationally demanding. Instead, each player only maintains and updates

a history of its own best responses. The sampling in Step 2(a) for player i then simply involves

sampling Nk iteration counters, that is, integers from the set {1, 2, . . . , k�1}, with equal probability.

The pure strategies stored at those locations in the history of best responses for player i then form

the sample  jk
i , for j = 1, 2, . . . , Nk. This process is probabilistically equivalent to sampling policies

according to fk�1

i .

Samples of size one: For computational e�ciency, we use Nk = 1 for all k rather than in-

creasing Nk at a rate that guarantees convergence as per Theorem 4.2. SFP with samples of size

one has been implemented previously on tra�c signal control problems [7] and DPs that arise in

stochastic inventory control problems [8], producing good solutions in both cases. We consider this

modification to be in line with a similar practice in other stochastic search methods. For example,

in Simulated Annealing [14], the temperature parameter should be decreased slowly with iterations

in order to guarantee convergence to optimality, however, in practice, the temperature is reduced

much faster. Samples of size one simplify the best response problem (11) significantly as described

next.

Best response problem (11) is a DP with a one-dimensional action-space: Suppose

Nk = 1, and let ⇠k 2  be the pure joint strategy sampled in iteration k. Then problem (11) for

player i reduces to  k
i 2 argmax i2 i

U( i, ⇠
k
�i), or in other words, to

 k
i 2 argmax

 i2 i

VO( i,⇠k
�i)

(s
1

), (12)

by (4). The above problem is a stochastic DP with a one-dimensional action-space since pure

strategies of all players other than player i are fixed at ⇠k
�i. It can be solved using Bellman’s

equations

V k
it (st) , max

ai2Ai(st)

⇢

rt(st, (ai, ⇠
k
�it(st))) +

X

st+12St+1

pt(st+1

; st, (ai, ⇠
k
�it(st)))V k

it+1

(st+1

)
�

(13)
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for all st 2 St in the order t = T, T � 1, . . . , 1, starting with V k
iT+1

(sT+1

) = 0 for all sT+1

2 ST+1

.

The best response strategy  k
i in problem (12) is given by decisions that achieve the above maxima,

and the corresponding optimal value VO( k
i ,⇠k

�i)
(s

1

) equals V k
i1(s1

). This discussion shows that each

iteration of SFP solves n DPs, each with a one-dimensional action-space, instead of solving the

original, intractable n-dimensional DP. Thus the e↵ort expended in k iterations is proportional to

k⇥M ⇥ n. The best response problem is also a DP when Nk > 1 but in the interest of brevity we

defer that discussion to Appendix B.

Algorithm output: As is common in other stochastic search algorithms, we track the best

value attained and the corresponding policy that achieves this value during algorithm execution.

Specifically, the best value attained in iterations 1 through k is given by

V (k) , max
l=1,2,...,k

⇢

max
i=1,2,...,n

V l
i1(s1

)
�

.

Suppose that V (k) is achieved during the best response calculation for player i⇤(k) in iteration

1  l⇤(k)  k. That is, V (k) = V
l⇤(k)

i⇤(k)1

(s
1

). Also let ⇠l⇤(k) be the policy sampled in iteration

l⇤(k), and recall that  l⇤(k)

i⇤(k)

denotes player i⇤(k)’s best response to ⇠l⇤(k)

�i⇤(k)

in this iteration. Then

⇡(k) = O
⇣

 
l⇤(k)

i⇤(k)

, ⇠
l⇤(k)

�i⇤(k)

⌘

2 ⇧ is the best multi-action stochastic DP policy found by Algorithm

4.1 in the first k iterations. Thus, if the algorithm is terminated after K iterations, both V (K) and

⇡(K) are available as algorithm output.

5 Application to integrated capital investment, dynamic pricing,

production scheduling and sales decisions in manufacturing

The problem we study in this section was motivated by our industrial collaborators at the General

Motors Advanced Manufacturing Laboratory at the University of Michigan. Consider a manufac-

turing firm that produces units of one product such as computers, cars, airplanes, or clothes. We

model the manufacturing process over a finite planning horizon that is divided into periods of equal

length. At the beginning of the horizon, a strategic decision is made as to what plant capacity to

put in operation. At the beginning of each period, the unit price of the product is determined. This
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induces a random demand for the product during that period through a price-demand function.

The number of units to be produced in that period is decided before observing the realized demand.

We allow for unreliable equipment and hence the plant may not be actually able to produce these

many units. Before observing the realized demand and the realized production, a goal is set as

to how many units should be sold in that period. We assume that extra demand is lost, that is,

back-ordering is not allowed. The units remaining at the end of a period can be carried to the next

period as inventory and used to satisfy the demand in that and subsequent periods. Inventory left

at the end of the planning horizon is assumed to have no value. The goal is to maximize profit

where revenue is generated by selling the product and costs are incurred for building the plant,

production, and storing inventory.

We use the following notation:

• The planning horizon T is divided into periods of equal duration denoted by the indices

t = 1, 2, . . . , T .

• The finite set of possible integer plant capacities is given by M , {m
1

,m
2

, . . . ,m|M|} where

0 < m
1

< m
2

< . . . < m|M|.

• The cost of building a plant with capacity m 2 M is C(m) incurred every period. Thus the

total cost of building is TC(m). It may seem more natural to incur the building cost as a

single, lump-sum expense. We instead followed the equivalent amortized cost approach to

prevent the building costs from overwhelmingly dominating the profit function in problems

with short planning horizons. Note that any current cash flow can be easily converted into

an equivalent present-value annuity having any desired term. Another reason to allocate

capacity costs by time period is that some fixed costs (heating, cooling, taxes, security, etc.)

are incurred each time period.

• The finite set of possible unit prices in each period is denoted by P.

• We let D , {D
1

(·), D
2

(·), . . . , D|D|(·)} be the set of possible price-demand functions. The

demand induced by a particular price p 2 P is an integer Dk(p) with probability Qk inde-

pendently of everything else.
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• ⇢ is a random variable independent of everything else that equals the fraction of planned

capacity actually available for production (reliability) in a period. The random variable takes

value lk from a finite set L , {l
1

, l
2

, . . . , l|L|} with probability Plk .

• The cost of production depends on the period t, the plant capacity m, the planned production

level x, as well as the realized production x̂, and is denoted by c(t, m, x, x̂).

• The cost of carrying an inventory of i units at the beginning of period t is h(t, i). The initial

inventory is zero.

• The number of units planned to be sold at the end of a period is denoted z whereas the

realized sales are denoted ẑ.

5.1 A multi-action stochastic DP formulation

Suppose capacity m 2 M is chosen at the beginning of the planning horizon. For this fixed capacity

value, the state of our manufacturing system beginning period t = 1, 2, . . . , T is given by (t, (i, m)),

where i is the inventory on hand and belongs to the set {0, 1, 2 . . . , (t � 1)m} as (t � 1)m is the

maximum possible total production in periods 1, 2, . . . , t� 1. The set F (t, (i, m)) of jointly feasible

pricing, production, and sales decision vectors (p, x, z) is defined by constraints

p 2 P (14)

x 2 {0, 1, . . . ,m} (15)

z 2 {0, 1, . . . , i + x}. (16)

For any nonnegative real number y, let byc denote the largest integer not bigger than y. After

choosing decisions (p, x, z) 2 F (t, (i,m)), a price-demand function Dj(·) 2 D and a reliability

lk 2 L are realized, leading to actual production and sales

x̂ = min{x, blkmc} (17)

ẑ = min{z, i + x̂, Dj(p)} = min{z, i + min{x, blkmc}, Dj(p)}. (18)
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Thus the state of the system beginning the next period is (t + 1, (i + x̂ � ẑ,m)) with probability

PlkQj . The expected profit is given by

rt((i, m), (p, x, z)) ,
 

X

lk2L

X

Dj(·)2D

PlkQj



pẑ � C(m)� c(t, m, x, x̂)� h(t + 1, i + x̂� ẑ)
�

!

.

A feasible policy ⇡ is a decision rule that assigns price, production and sales decisions (p, x, z) =

(⇡
1

(t, (i,m)),⇡
2

(t, (i,m)),⇡
3

(t, (i,m))) 2 F (t, (i, m)) to every state (t, (i,m)). The set of all feasible

policies is denoted ⇧. Then, the total T -period expected profit under policy ⇡ 2 ⇧ is

V⇡(0,m) = E⇡

"

T
X

t=1

rt((It,m), (⇡
1

(t, (It,m)),⇡
2

(t, (It,m)),⇡
3

(t, (It,m))))

�

�

�

�

�

I
1

= 0,m

#

,

where I
2

, I
3

, . . . is a sequence of inventory levels induced by the policy ⇡ given that the initial

inventory I
1

is zero, and the plant capacity is fixed at m 2 M.

As a result, given plant capacity m, we wish to solve

V
1

(0,m) , max
⇡2⇧

V⇡(0,m). (19)

This can in principle be achieved by solving Bellman’s equations

Vt(i,m) , max
(p,x,z)2F (t,(i,m))

 

rt((i,m), (p, x, z)) +
X

lk2L

X

Dj(·)2D

PlkQjVt+1

(i + x̂� ẑ,m)

!

(20)

in the order t = T, T � 1, . . . , 1, where VT+1

(i, m) = 0, and x̂, ẑ are given by (17) and (18),

respectively. Once V
1

(0,m) is available from (20) for every m 2 M, the optimal capacity m⇤ can

be obtained by enumeration as

m⇤ , argmax
m2M

V
1

(0,m). (21)

Thus, we first focus on solving (19), which is a multi-action stochastic DP with three-dimensional

decision vectors. As our numerical experiments will show, exact solution of Bellman’s equations

(20) is computationally demanding. We instead apply our game theoretic approximation approach

from Section 4, and demonstrate numerically that it finds near-optimal solutions very quickly.

However, first notice that (19) is not an unconstrained multi-action stochastic DP. This is
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because decisions x and z are linked through constraint (16) and hence the set F (t, (i,m)) of

feasible decision vectors (p, x, z) does not have the Cartesian product structure that is essential

in viewing a multi-action stochastic DP as a game. In the next section, we present a variable

transformation that converts the constrained problem (19) into an unconstrained one and then

describe the resulting game of common interests.

5.2 A variable transformation and a game of common interests

Instead of selecting the planned production directly, we set the planned production to a fraction

of the plant capacity. Similarly, instead of selecting the planned sales directly, we set the planned

sales to a fraction of the inventory that would be available if the planned production is realized.

We do not alter the price decision.

We introduce some notation to make these ideas precise. Let d
max

be the maximum demand

that could be observed in a period and d(i) be the maximum possible amount that we could sell in

a period where the inventory on hand is i, that is,

d
max

, max
Dj(·)2D

Dj(min{P}),

d(i) , min
�

d
max

, i + m|M|
 

.

We define sets

B
1

(t, (i,m)) , P, (22)

B
2

(t, (i,m)) ,
⇢

0,
1

m|M|
,

2
m|M|

, . . . , 1
�

, and (23)

B
3

(t, (i,m)) ,
⇢

0,
1

d(i)
,

2
d(i)

, . . . , 1
�

, (24)

and let B(t, (i,m)) = B
1

(t, (i, m)) ⇥ B
2

(t, (i, m)) ⇥ B
3

(t, (i,m)). This particular definition of sets

B
2

and B
3

ensures that they have su�cient “resolution” such that the subsequent transformation

of joint strategies to feasible policies is onto. Now consider a game between three players, indexed

1, 2, 3, which we call the revenue management (RM) player, the production planning (PP) player,

and the sales (S) player, respectively. Pure strategy  
1

of RM is a mapping that assigns prices
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1

(t, (i,m)) 2 B
1

(t, (i,m)) to all possible inventories i and all periods t (recall that plant capacity

m is fixed while solving (19)). Similarly, pure strategy  
2

of PP is a mapping that assigns frac-

tions  
2

(t, (i,m)) 2 B
2

(t, (i,m)), and pure strategy  
3

of S is a mapping that assigns fractions

 
3

(t, (i,m)) 2 B
3

(t, (i, m)) to all i and t. The finite sets of pure strategies of RM, PP, and S are

denoted by  
1

, 
2

, 
3

, respectively, and  ,  
1

⇥ 
2

⇥ 
3

denotes the finite set of their pure joint

strategies  = ( 
1

, 
2

, 
3

).

Each pure strategy  2  defines a unique policy ⇡ = O( ) 2 ⇧, which assigns feasible decision

vectors (p, x, z) = (⇡
1

(t, (i,m)),⇡
2

(t, (i,m)),⇡
3

(t, (i,m))) 2 F (t, (i, m)) to all i and t, where

p =  
1

(t, (i,m)), (25)

x = bm 
2

(t, (i,m))c, (26)

z = b 
3

(t, (i, m)) (i + bm 
2

(t, (i,m))c)c. (27)

After the demand function Dj(·) 2 D and reliability lk 2 L are realized, the production and sales

are given by (17) and (18), respectively. Also note that corresponding to every ⇡ 2 ⇧, there is at

least one  2  , such that O( ) = ⇡. That is, O :  ! ⇧ is an onto transformation. Finally, on

choosing pure joint strategy  2  , RM, PP, and S, receive a common payo↵

Um( ) , VO( )

(0,m), (28)

where the superscript m emphasizes that the plant capacity is fixed at m. This completes our

definition of a game of common interests between RM, PP, and S, and Lemmas 3.1 and 3.3 hold.

In fact, after defining mixed strategies for these three players, it is easy to see, by following the

reasoning in Section 3, that Lemma 3.5 will hold as well. We do not repeat the details here for

brevity. Now we are ready to describe our implementation of the SFP algorithm on this game of

common interests.

5.3 Description of algorithm implementation

For each m 2 M, we implemented the simplified version of SFP with e�ciently drawn samples of

size one as described after Algorithm 4.1. Here we present the stochastic DPs that arose in the
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best response problems for the RM, PP, and S players. To be precise, sampled strategies and best

response strategies should be indexed by this fixed value of m in the discussion below; however, we

suppress this for simplicity.

Let ⇠k
i , for i = 1, 2, 3, denote the pure strategy sampled in iteration k by the RM, PP, and S

players, respectively. Then the best response problems of these three players are respectively given

by

 k
1

2 argmax
 12 1

Um( 
1

, ⇠k
2

, ⇠k
3

) (29)

 k
2

2 argmax
 22 2

Um(⇠k
1

, 
2

, ⇠k
3

) (30)

 k
3

2 argmax
 32 3

Um(⇠k
1

, ⇠k
2

, 
3

). (31)

As described in Section 4, these three best response problems can be formulated as DPs. Fol-

lowing the notation in (13) we denote the optimal values in these three DPs by V k
11

(0,m), V k
21

(0,m),

and V k
31

(0,m), respectively. Suppose that for every m 2 M the algorithm is terminated after K

iterations. As is common in stochastic search algorithms, K can be chosen after some initial exper-

imentation as roughly the iteration counter where the algorithm stopped making significant gains

in objective value. We then propose the following method to obtain a plant capacity, and an inte-

grated price, production and sales policy for the original multi-action stochastic DP. As described

in Section 4, we tracked the best value found by our SFP algorithm. In particular, at the end of

K iterations with capacity m, we have,

V (K;m) , max
k=1,2,...,K

n

V k
11

(0,m), V k
21

(0,m), V k
31

(0,m)
o

. (32)

Suppose that the best value V (K;m) is achieved during player i’s best response calculation in the

kth iteration. That is, V (K;m) = V k
i1(0,m) for some i 2 {1, 2, 3} and some 1  k  K. Let

⇡m = O( k
i , ⇠k

�i) be the multi-action stochastic DP policy in ⇧ that achieved this value. The best

plant capacity was then found using the approximate version

m̄ 2 argmax
m2M

V (K;m) (33)
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of enumeration (21). The price, production, and sales policy is thus given by ⇡m̄, and the corre-

sponding objective value by V (K; m̄).

5.4 Problem data and results of numerical experiments

5.4.1 Problem data

The model in Section 5.1 requires data on plant building costs, stochastic price-demand functions,

production costs, inventory costs, and plant reliability. The general trend in some of these data as

plotted in Figure 1 was obtained from our collaborators at the General Motors Advanced Manu-

facturing Laboratory at the University of Michigan. The actual numbers shown in this figure have

been distorted for confidentiality. Specifically,

• The planning horizon was T = 15 periods, where each period corresponds to one year. We

repeated our experiments with T = 5 and T = 10 and found no di↵erence in SFP performance.

• There were 33 possible plant capacities (|M| = 33), ranging from yearly capacity of 20,000 to

120,000 units.

• The set P included 813 prices in the range $13,500 to $27,500.

• We assumed a constant elasticity demand function [29] of the form D(p) = e↵p�. In order to

introduce stochasticity, we parameterized demand functions Di(·) in the set D by parameters

↵i and �i. In particular, we included three possible demand functions that indicate low

demand, normal demand, and high demand. Fitting the data provided to us, this led to

(↵i,�i) 2 {(48.5573,�4.5076), (49.0478,�4.5076), (49.5383,�4.5076)}. Note that the lower

the price, the higher the demand owing to the negative value of parameter �i. In each

period, the actual realized demand was chosen from one of these three functions with equal

probability. We repeated our experiments with non-uniform probability mass functions and

found no di↵erence in SFP performance.

• The variable production cost (including both labor and material cost) was assumed to be

linear in the number of vehicles produced. Specifically, the variable production cost per

vehicle was assumed to decrease with increasing plant capacity due to economies of scale as

shown in Figure 1 and stationary across time periods.
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• The inventory holding cost per vehicle was assumed to be 20 percent of the unit variable

production cost in that period.

• The plant reliability value ⇢ was assumed to be an element of the set

L = {0.6, 0.66, 0.7, 0.74, 0.8}.

One of these values was selected with equal probability in each period. Again, we repeated our

numerical experiments with non-uniform probability mass functions and found no di↵erence

in SFP performance.

5.4.2 Numerical results

The numerical experiments were run on a computing cluster equipped with Intel Xeon 5400 series

processors. The operating system was a variant of RedHat Enterprise Linux. The code was written

in C++. The number of iterations K was set to 20 because the algorithm was empirically observed

to stop making significant progress in objective value thereafter.

First, standard backward recursion was employed to solve Bellman’s equations (20) for each of

the thirty three values of m 2 M. These thirty three implementations of backward recursion were

done in parallel . The time required for backward recursion depends on plant capacity m: the higher

the capacity, higher the time required. Thus, the time taken to complete backward recursion for the

largest capacity m=120,000 is reported in Table 1. Problem (21) can then be solved in negligible

time to obtain an optimal plant capacity, an optimal pricing, production and sales policy, and the

corresponding optimal objective value.

Since we have thirty three di↵erent capacities in M, thirty three runs of our algorithm — each

corresponding to one of these capacity values — were performed in parallel . Recall that the run

corresponding to capacity m 2 M yields V (20;m) and ⇡m on termination as described at the end

of Section 5.2. Problem (33) was then solved easily to obtain a capacity m̄, a pricing, production

and sales policy ⇡m̄, and the corresponding objective value V (20; m̄). In fact, sixty independent

runs of this entire procedure were performed with randomly generated initial pure strategies and

the approximate optimal values obtained at the end of these runs were averaged. The average
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Figure 1: (a) Production line building cost, paid by period, as a function of capacity. The shape
of the curve reflects the intuition that there is a capacity threshold below which a fully automated
production line does not make sense; automation is essential above this threshold. (b) Demand as
a function of price. (c) Variable production cost per vehicle as a function of capacity.

computation time required to complete the SFP procedure for the largest capacity m=120,000 is

given in Table 1.

Algorithm Execution time for m=120,000 Value estimate ratio
(relative to the optimal value)

Backward Recursion 20.6 hours (1240 minutes) 1.0
SFP 5.4 minutes (averaged over 60 runs) 0.99

Table 1: Performance comparison between exact backward recursion and our SFP solver

From Table 1, we see that the SFP solver on average found objective values within 1% of the

optimal objective value in only about 5 minutes. On the other hand, exact backward recursion
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takes about 20 hours of CPU time (about 227 times slower than our SFP solver). The progress of

the SFP solver over twenty iterations is illustrated in Figure 2. The standard practice in sampling

based algorithms for DP, and more generally, for global optimization, is to plot average algorithm

performance over independent runs versus iterations (see for example [5, 28]). Following this

approach, we track the best value observed by SFP as a fraction of the optimal value, and plot its

average over sixty independent runs. We observe that the SFP solver makes most improvements

during early iterations (the average fraction climbs to about 0.95 in just 5 iterations), and despite

having large variation during the early iterations (due to randomly generated initial solutions), the

ratio converges quickly later on. The range of fractions at the 20th iteration was only [0.972, 0.999],

with an average of 0.99. Thus even in the worst case (out of the sixty random instances of initial

solutions), the SFP solver was within 3% of the optimal value.
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Figure 2: For each iteration, the average (over sixty independent runs with random initial solutions)
ratio of best value found by SFP to the optimal value is plotted. The error bars surrounding each
value correspond to +1 and -1 standard deviations.

We also compared SFP performance with a one-step lookahead heuristic (see Section 6.3 of

[1]). In fact, we gave this heuristic a significant (unfair) advantage by implementing it for the

optimal plant capacity m⇤ as found earlier by backward recursion. In state (t, (i,m⇤)), this heuristic
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prescribes a decision that solves

max
(p,x,z)2F (t,(i,m⇤

))

 

rt((i, m⇤), (p, x, z)) +
X

lk2L

X

Dj(·)2D

PlkQj
eVt+1

(i + x̂� ẑ, m⇤)

!

, (34)

where eVt+1

is an approximation of Vt+1

in (20) given by

eVt+1

(i,m⇤) , i⇥ min
Dj(·)2D

D�1

j (i) (35)

for all i. That is, the value of inventory left at the end of period t is assumed to equal the revenue

generated by selling that inventory at the lowest possible price.

We tested this heuristic on the fly using simulations. That is, problem (34) is solved, and the

corresponding decision is implemented, only in states visited in a discrete-event simulation that

samples price-demand functions and plant reliability values from their respective distributions,

starting with zero initial inventory. We averaged the profits obtained in 10,000 such independent

simulations to estimate the total expected profit generated by the one-step lookahead heuristic

over periods 1, 2, . . . , T . This estimate was only about 93% of the optimal value (recall in contrast

from above that SFP values are on average 99% of the optimal). In addition, we ran 10,000 such

simulations using a policy prescribed by SFP. A paired t-test showed that the di↵erence between

profits generated by the one-step lookahead heuristic and by SFP was statistically significant.

6 Conclusions and directions for future research

The main contribution of this paper is in showing rigorously how SFP, a game theoretic learning

paradigm that has recently been successful in approximately solving other discrete optimization

problems, can be applied to multi-action stochastic DPs. This is a class of stochastic sequential

decision problems where the decision in each system state is an n-dimensional vector. These

problems su↵er from the curse of action-space dimensionality, because the e↵ort needed for solving

the Bellman’s equation in each system state is exponential in n.

Our approach begins by viewing multi-action stochastic DPs as games of common interests

among n players, each corresponding to one component of the decision vectors. Thus player i’s
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pure strategy determines the ith component of the n-dimensional decision vector in each state. In

each iteration of our simplified implementation of SFP, each player solves a best response problem

where the pure strategies of the other players are fixed. Consequently, each of these best response

problems is a DP with a one-dimensional action-space, and hence can be solved e�ciently. This

implies that whereas the computational e↵ort required for exact solution of the original multi-action

stochastic DP is exponential in n, the computational work done in a fixed number of SFP iterations

is linear in n.

SFP’s e�ciency was demonstrated through numerical experiments on a case study from manu-

facturing. This manufacturing problem was a constrained multi-action stochastic DP. Specifically,

(some of) the components of the multi-dimensional decision vectors were linked by coupling con-

straints and hence the DP did not have the Cartesian product structure that is essential for imple-

menting SFP. We overcame this hurdle by developing a variable transformation that converted the

constrained multi-action stochastic DP into an unconstrained one. SFP was then able to find near-

optimal solutions hundreds of times faster than backward recursion. SFP also found significantly

better solutions as compared to a one-step lookahead heuristic.

While we have laid a basic foundation for applying SFP to multi-action stochastic DPs, several

open questions remain unanswered. These will provide directions for future research as we outline

next.

6.1 Future research directions

Corollary 4.3 only guarantees convergence to the set of locally optimal policies. It is desirable to be

able to strengthen this result and say that SFP converges to the set of optimal policies for multi-

action stochastic DPs. However, such a strengthening does not appear possible at least with the

standard version of SFP that was used in this paper. This limitation stems from the well-known fact

that SFP may not in general converge to optimal Nash equilibria of games of common interests [16].

A more practically relevant question is whether the objective value of the best solution sampled

by SFP converges to the optimal objective value. Unfortunately, even this weaker result does not

hold for games of common interests. It is possible, however, to achieve this weaker but practically

relevant form of convergence by implementing a “noisy” version of SFP where, in iteration k, each

player randomly samples a policy with probability ✏k and samples from the empirical frequency of
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best responses as in Algorithm 4.1 with probability 1�✏k. Then, if ✏k ! 0 at a rate such that every

pure joint strategy is sampled infinitely often with probability one as k !1, it is easy to see that

the objective value of the best policy sampled will converge to the optimal objective value. There

has been a growing interest in such variants of SFP [8, 11, 20, 21, 30]. We leave their convergence

analyses and computational comparisons in the specific context of multi-action stochastic DPs to

future research.

To the best of our knowledge, all implementations of SFP, including the one in Section 5 in this

paper, have used samples of size one, that is, Nk = 1. While this is a significant deviation from

theory, it has proven adequate in e�ciently finding good quality solutions in numerical experiments

on static as well as dynamic optimization problems [8, 12, 17]. Using larger values of Nk in an

SFP implementation leads to a better approximation of the expected value calculation in FP and

also to a better exploration of the policy space, but it makes the best response computation more

demanding. Compare, for instance, the simple best response DP (13) for Nk = 1 with the somewhat

more clumsy best response DP (38) for Nk > 1. We did perform some exploratory numerical

experiments with Nk = 2, 3, 4, 5 but found that Nk = 1 in fact achieved slightly better objective

values. In the future, it would be interesting to numerically investigate this tradeo↵ using several

values of Nk for various multi-action stochastic DPs.

As demonstrated in our manufacturing case study, onto transformations that map infeasible so-

lutions into feasible ones significantly expand the applicability of our SFP algorithm to constrained

multi-action stochastic DPs. For example, a simple transformation that converts the constrained

multi-action stochastic DP formulation of a class of dynamic resource allocation problems into an

unconstrained multi-action stochastic DP is described in Appendix B. While it is essentially always

possible as stated in Section 2 to convert a constrained problem into an unconstrained one using

a trivial onto transformation, we believe that e↵ective transformations will need to be problem

specific and may require some trial-and-error. Intuitively, “nondegenerate” transformations where

componentwise variations in the constrained problem produce comparable componentwise varia-

tions in the unconstrained problem, are likely to work well. When the linking constraints define

a full-dimensional, well-rounded (the ratio of the radii of a circumscribed and an inscribed ball is

not too large) convex set in a Euclidean space and the feasible decision vectors in the constrained

multi-action stochastic DP are given by the intersection of this convex set with the integer grid, one
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possibility could be to use proportional projection and rounding. Its rough schematic is shown in

Figure 3. Future research will investigate the viability of such transformations and their impact on

the quality of solutions delivered by SFP for di↵erent classes of constrained multi-action stochastic

DPs.

A

E

B

D
C

F

Figure 3: A schematic of projection and rounding when the feasible decision vectors are given by
integer grid points inside a convex set. The bounding box grid represents the Cartesian product
A(st). E is an arbitrary but fixed feasible point known to the decision maker. The infeasible grid
point B is first projected to point D such that the length ratios (BE/AE) and (DE/CE) are equal.
Then point D is rounded to the feasible point F .

Acknowledgments

This research was funded in part by the National Science Foundation under grants CCF-0830380

and CCF-0830092, and by the General Motors Collaborative Research Laboratory at the University

of Michigan. Archis Ghate appreciates summer support from the University of Washington.

A Formulation of a dynamic resource allocation problem as an

unconstrained multi-action stochastic DP

We first provide a detailed description of a typical dynamic resource allocation problem. An initial

amount M > 0 of one resource is available at the beginning of the first period. A random amount

bt 2 {0, 1, 2 . . . , B} of this resource arrives at the beginning of period t, for t = 2, . . . , T . The

probability mass function of bt is qt(·). State st denotes the amount of resource available at the

beginning of period t, and hence s
1

= M . Thus, for t = 2, 3, . . . , T , the state space St equals
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{0, 1, 2, . . . ,M + (t � 1)B}. The cost of storing an amount st of the resource at the beginning

of period t, for t = 2, 3, . . . , T + 1, is given by ht(st), where ht(·) are the holding cost functions.

The decision maker observes the amount of resource available and chooses positive integer levels

a
1

, a
2

, . . . , an at which to perform n heterogeneous activities. Let c
1t > 0, c

2t > 0, . . . , cnt > 0

denote the amounts of the resource consumed in period t by each unit level of activities 1, 2, . . . , n,

respectively. Let Ait(st) = {0, 1, 2, . . . , bst/citc}, for i = 1, 2, . . . , n. Here bst/citc is the level at

which activity i could be performed if all st units of the resource were allocated to this activity.

Let At(st) = A
1t(st)⇥A

2t(st)⇥ . . .⇥Ant(st). The set of feasible activity levels is then defined by

Ft(st) = {(a
1

, a
2

, . . . , an) 2 A(st) : c
1ta1

+ c
2ta2

+ . . . + cntan  st}.

The reward obtained on performing the n activities at levels a = (a
1

, . . . , an) 2 Ft(st) in period t is

given by �t(st, a), where �t(·, ·) is the reward function. After performing these activities, the state

transitions into st+1

= st � (c
1ta1

+ c
2ta2

+ . . . + cntan) + bt+1

with probability qt+1

(bt+1

). Thus

the expected net reward accrued in period t is given by

rt(st, a) = �t(st, a)�
B
X

bt+1=0

qt+1

(bt+1

)ht+1

(st � (c
1ta1

+ c
2ta2

+ . . . + cntan) + bt+1

).

The decision maker’s goal is to choose a resource allocation policy, that is, to choose activity levels

in each possible state in each period, so as to maximize the total expected net reward accrued in

periods 1 through T . This problem is clearly a constrained multi-action stochastic DP.

This constrained problem can be converted into an unconstrained multi-action stochastic DP as

follows. Instead of choosing decision vectors a 2 Ft(st), the decision maker chooses decision vectors

x 2 At(st). We define transformations ⌦t,st : At(st) ! Ft(st) such that ⌦t,st(x) = y, where

y =
✓�

stx1

max(c
1tx1

+ c
2tx2

+ . . . + cntxn, st)

⌫

,

�

stx2

max(c
1tx1

+ c
2tx2

+ . . . + cntxn, st)

⌫

, . . . ,

�

stxn

max(c
1tx1

+ c
2tx2

+ . . . + cntxn, st)

⌫◆

.

Notice that if x 2 Ft(st), then c
1tx1

+ c
2tx2

+ . . . + cntxn  st and hence max(c
1tx1

+ c
2tx2

+ . . . +

cntxn, st) = st. As a result, for any i = 1, 2, . . . , n, we have stxi
max(c1tx1+c2tx2+...+cntxn,st)

= stxi
st

= xi.
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On the other hand, if x 2 At(st) \Ft(st), then max(c
1tx1

+ c
2tx2

+ . . .+ cntxn, st) = c
1tx1

+ c
2tx2

+

. . . + cntxn. Thus,

c
1ty1

+ . . . + cntyn = c
1t

�

stx1

c
1tx1

+ c
2tx2

+ . . . + cntxn

⌫

+ . . . + cnt

�

stxn

c
1tx1

+ c
2tx2

+ . . . + cntxn

⌫

 stc1tx1

c
1tx1

+ c
2tx2

+ . . . + cntxn
+ . . . +

stcntxn

c
1tx1

+ c
2tx2

+ . . . + cntxn
= st.

In summary, the transformations ⌦t,st do not alter feasible decision vectors but convert infeasible

decision vectors into feasible ones. The former implies that these transformations are onto. If the

decision maker chooses vector x 2 At(st), the system transitions into st+1

= st�(c
1t[⌦t,st(x)]

1

+. . .+

cnt[⌦t,st(x)]n)+bt+1

with probability qt+1

(bt+1

). We also extend the domain of the reward function

�t(·, ·) from St ⇥ Ft(st) to St ⇥ At(st) by defining �t(st, x) = �t(st,⌦t,st(x)) for all x 2 At(st)

and for all st 2 St. Owing to the onto property of our transformations ⌦t,st , it is easy to see

as in Lemma 3.1 that if an allocation policy is optimal to the unconstrained problem then the

corresponding transformed policy is optimal to the constrained problem. Consequently, it su�ces

to solve the unconstrained problem to which the SFP algorithm described in this paper applies in

a straightforward manner.

B Best response DP when the sample size Nk > 1

Consider the best response problem (11) for player i in Algorithm 4.1. For each aggregate pure

joint strategy ⇠�i 2  �i of all players other than player i, let k
�i(⇠�i) = {j :  jk

�i = ⇠�i}. That is,

k
�i(⇠�i) is the set of samples (out of the Nk samples drawn in iteration k) in which players other

than player i sample ⇠�i. Interpret f̂k
�i(⇠�i) = |k

�i(⇠�i)|
Nk

as the probability with which players other

than player i play the pure joint strategy ⇠�i. Player i’s best response problem (11) can then be

rewritten as

 k
i = argmax

 i2 i

X

⇠�i2 �i

|k
�i(⇠�i)|
Nk

U( i, ⇠�i) = argmax
 i2 i

X

⇠�i2 �i

f̂k
�i(⇠�i)U( i, ⇠�i) (36)

= argmax
 i2 i

V
⇥( i, ˆfk

�i)
(s

1

). (37)
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Also let ��it(st, a�i; f̂k
�i) be the probability that aggregate action a�i 2 A�i(st) is chosen in state

st 2 St in period t by the aggregate player who employs mixed strategy f̂k
�i. That is,

��it(st, a�i; f̂k
�i) =

X

{⇠�i2 �i:⇠�it(st)=a�i}

f̂k
�i(⇠�i).

Then problem (36) can be interpreted as follows. At the beginning of each period t = 1, 2, . . . , T ,

player i observes the state st 2 St of the system and chooses a decision ai 2 Ai(st). The system

then transitions into a state st+1

2 St+1

with probability qk
it(st+1

; st, ai) that is given by

qk
it(st+1

; st, ai) =
X

a�i2A�i(st)

pt(st+1

; st, (ai, a�i))��it(st, a�i; fk
�i),

and player i receives an expected reward that equals
P

a�i2A�i(st)

��it(st, a�i; fk
�i)rt(st, (ai, a�i)).

Player i’s goal is to maximize the total T -period expected reward it accrues starting in the initial

state s
1

. Problem (36) can therefore be formulated as a standard finite-horizon stochastic DP

and can be solved through the following Bellman’s equations for all st 2 St in the order t =

T, T � 1, . . . , 1:

V k
it (st) = max

ai2Ai(st)

⇢

X

a�i2A�i(st)

��it(st, a�i; fk
�i)rt(st, (ai, a�i))+

X

st+12St+1

qk
it(st+1

; st, ai)V k
it+1

(st+1

)
�

, (38)

where V k
iT+1

(sT+1

) = 0 for all sT+1

2 ST+1

. Actions ai that achieve the above maxima define a

best response policy  k
i for player i, which can then be employed to perform a belief update.
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